Fire in da houseTop Tip:Paying $100+ per month for Perplexity, MidJourney, Runway, ChatGPT is crazy - get all your AI tools in one site starting at $15 per month with Galaxy AIFire in da houseCheck it out free

mcp-server-coreshub

MCP.Pizza Chef: coreshub

The mcp-server-coreshub is a Python-based MCP server designed for Coreshub, providing a modular plugin architecture for tools and prompt plugins. It supports secure configuration management and runs efficiently with Python and uv, integrating seamlessly with environments like Cherry Studio. This server enables structured, real-time context feeding and tool orchestration for LLMs, facilitating advanced AI workflows within the Coreshub ecosystem.

Use This MCP server To

Integrate Coreshub tools and plugins into MCP workflows Run MCP server within Cherry Studio for AI model orchestration Manage secure environment variables for AI service authentication Extend MCP capabilities with custom plugins and utilities Deploy MCP server on macOS and other platforms Enable real-time context and tool interaction for LLMs

README

Coreshub MCP Server

1、项目结构

src/coreshub_mcp_server/
├── plugins/           # 插件目录,所有工具和提示插件
├── utils/             # 工具函数
│   └── signature.py   # 签名工具函数
├── base_plugin.py     # 工具和提示基类
├── settings.py        # 配置管理
└── server.py          # MCP服务器实现
开始之前请确保安装好 python 和 uv

2、运行

场景一:在Cherry Studio中运行

注⚠️:为保证工具的正确调用,建议使用32B参数以上的模型服务

(1)一键拉取使用

在Cherry Studio的设置——MCP服务器——编辑MCP配置

{
  "mcpServers": {
    "coreshub-mcp-server": {
      "type": "stdio",
      "registryUrl": "http://mirrors.aliyun.com/pypi/simple/",
      "command": "uvx",
      "args": [
        "--from",
        "git+https://github.com/coreshub/mcp-server-coreshub",
        "coreshub-mcp-server"
      ],
      "env": {
        "QY_ACCESS_KEY_ID": "基石智算的AK",
        "QY_SECRET_ACCESS_KEY": "基石智算的SK",
        "CORESHUB_USER_ID": "基石智算的账户ID"
      }
    }
  }
}

(2)从github下载到本地后使用

在Cherry Studio的设置——MCP服务器——添加服务器,进入编辑模式

对于macOS系统:

类型选择:

stdio

命令填写:

sh

参数填写:

-c
cd 项目根目录路径 && uv run coreshub-mcp-server

环境变量填写:

QY_ACCESS_KEY_ID=基石智算的AK
QY_SECRET_ACCESS_KEY=基石智算的SK
CORESHUB_USER_ID=基石智算的账户ID
对于windows系统:

类型选择:

stdio

命令填写:

cmd

参数填写:

/c
cd 项目根目录路径 && uv run coreshub-mcp-server

环境变量填写:

QY_ACCESS_KEY_ID=基石智算的AK
QY_SECRET_ACCESS_KEY=基石智算的SK
CORESHUB_USER_ID=基石智算的账户ID

场景二:命令行操作(需实现client)

(1)首先配置环境变量

可以在代码中配置,在settings.py中配置

class Settings:
    access_key = os.getenv("QY_ACCESS_KEY_ID", "基石智算的AK")
    secret_key = os.getenv("QY_SECRET_ACCESS_KEY", "基石智算的SK")
    user_id = os.getenv("CORESHUB_USER_ID", "基石智算的账户ID")

或者在本机系统环境变量配置

export QY_ACCESS_KEY_ID="基石智算的AK"
export QY_SECRET_ACCESS_KEY="基石智算的SK"
export CORESHUB_USER_ID="基石智算的账户ID"

(2)在项目根目录使用 uv检查服务状态

uv run src/coreshub_mcp_server
命令行参数
  • --debug: 启用调试模式,输出详细日志
  • --list-plugins: 列出所有已加载的插件
  • --log-file: 指定日志文件路径

3、开发

1、添加新工具

src/coreshub_mcp_server/plugins 目录下创建新的Python文件,然后实现 BaseTool 和/或 BasePrompt 的子类。工具和提示现在是分离的概念,可以根据需要只实现其中一种或两种。

(1)工具实现示例:

from coreshub_mcp_server.base_plugin import BaseTool


class MyTool(BaseTool):
    tool_name = "my_tool"
    tool_description = "我的自定义工具"

    @staticmethod
    def model_json_schema():
        return {
            "type": "object",
            "properties": {
                "param": {
                    "type": "string",
                    "description": "参数描述"
                }
            }
        }

    async def execute_tool(self, arguments):
        # 实现工具逻辑
        pass


# 注册工具
MyTool.register()

(2)提示实现示例:

from coreshub_mcp_server.base_plugin import BasePrompt
from mcp.types import PromptArgument


class MyPrompt(BasePrompt):
    prompt_name = "my_prompt"
    prompt_description = "我的自定义提示"
    prompt_arguments = [
        PromptArgument(
            name="param",
            description="参数描述",
            required=False
        )
    ]

    async def execute_prompt(self, arguments=None):
        # 实现提示逻辑
        pass


# 注册提示
MyPrompt.register()

4、可用工具

1、get_epfs_filesystem 返回已经创建的epfs文件系统

  • zone
    • type: string
    • description: 区域标识,从上下文获取,选项:xb3,xb2,hb2
    • default: xb3
    • required: True
  • owner
    • type: string
    • description: 用户名
    • default: 基石智算的账户ID
    • required: True
  • user_id
    • type: string
    • description: 容器实例的拥有者ID,可以从上下文字段user_id获取
    • default: 基石智算的账户ID
    • required: True

2、get_epfs_bill_info 返回epfs文件系统的账单信息

  • resource_id
    • type: string
    • description: 资源ID,从上下文resource_id字段获取
    • required: True
  • zone
    • type: string
    • description: 区域标识,从上下文获取,选项:xb3,xb2,hb2
    • default: xb3
    • required: True
  • owner
    • type: string
    • description: 用户名
    • default: 基石智算的账户ID
    • required: True
  • user_id
    • type: string
    • description: 容器实例的拥有者ID,从上下文字段user_id获取
    • default: 基石智算的账户ID
    • required: True

3、get_container_info 返回已经创建的容器实例,也可根据参数进行查询

  • limit
    • type: integer
    • description: 返回结果的最大数量
    • default: 10
    • required: False
  • offset
    • type: integer
    • description: 分页偏移量
    • default: 0
    • required: False
  • zone
    • type: string
    • description: 区域标识,从上下文获取,选项:xb3,xb2,hb2
    • default: xb3
    • required: True
  • name
    • type: string
    • description: 按照实例名字进行模糊搜索
    • default: ""
    • required: False

4、get_ssh_info 返回特定实例的SSH信息

  • namespace
    • type: string
    • description: 容器实例的命名空间,从上下文字段namespace获取
    • default: 小写的基石智算账户ID
    • required: True
  • uuid
    • type: string
    • description: 容器实例的uuid,可以从上下文uuid中获取
    • required: True
  • zone
    • type: string
    • description: 区域标识,从上下文获取
    • default: xb3
    • required: True
  • owner
    • type: string
    • description: 容器实例的拥有者,可以从上下文字段user_id获取
    • default: 基石智算的账户ID
    • required: True
  • user_id
    • type: string
    • description: 容器实例的拥有者ID,可以从上下文字段user_id获取
    • required: True
  • services
    • type: array
    • description: 要开启的服务列表
    • default: ["ssh", "custom", "node_port"]
    • required: True

5、get_distributed_training 返回已经创建的分布式训练任务

  • end_at
    • type: string
    • description: 结束时间,格式为%Y-%m-%d %H:%M:%S
    • default: 当前时间
    • required: True
  • start_at
    • type: string
    • description: 开始时间,格式为%Y-%m-%d %H:%M:%S
    • default: 默认为一周前时间
    • required: True
  • limit
    • type: integer
    • description: 每页显示的条数
    • default: 10
    • required: True
  • offset
    • type: integer
    • description: 偏移量
    • default: 0
    • required: True
  • zone
    • type: string
    • description: 区域
    • default: 默认为xb3,可选xb2,hb2
    • required: True
  • owner
    • type: string
    • description: 所有者
    • default: 基石智算的账户ID
    • required: True
  • user_id
    • type: string
    • description: 用户ID
    • default: 基石智算的账户ID
    • required: True

6、get_distributed_training_detail_log 返回分布式训练任务的详细日志

  • end_time
    • type: string
    • description: 结束时间,格式为纳秒时间戳1745304819402256896
    • default: 当前时间
    • required: True
  • start_time
    • type: string
    • description: 开始时间,格式为纳秒时间戳1745283219402259200
    • default: 默认为12小时前
    • required: True
  • fuzzy
    • type: boolean
    • description: 是否模糊
    • default: True
    • required: False
  • reverse
    • type: boolean
    • description: 是否反转
    • default: True
    • required: True
  • size
    • type: integer
    • description: 每页显示的条数
    • default: 100
    • required: True
  • train_uuid
    • type: string
    • description: 训练ID
    • default: 来自上下文train_uuid,如果上下文没有,则需要询问,从get_distributed_training获取
    • required: True
  • zone
    • type: string
    • description: 区域
    • default: 默认为xb3,可选xb2、hb2
    • required: True
  • owner
    • type: string
    • description: 所有者
    • default: 基石智算的账户ID
    • required: True
  • user_id
    • type: string
    • description: 用户ID
    • default: 基石智算的账户ID
    • required: True

7、get_inference_service 返回已经创建的推理服务

  • zone
    • type: string
    • description: 区域标识,从上下文获取,选项:xb3,xb2,hb2
    • default: xb3
    • required: True
  • owner
    • type: string
    • description: 用户名
    • default: 基石智算的账户ID
    • required: True
  • key_words
    • type: string
    • description: 关键字
    • default: ""
    • required: False
  • page
    • type: integer
    • description: 页码
    • default: 1
    • required: False
  • size
    • type: integer
    • description: 每页数量
    • default: 10
    • required: False

8、get_inference_service_log 返回推理服务日志

  • zone
    • type: string
    • description: 区域标识,从上下文获取,选项:xb3,xb2,hb2
    • default: xb3
    • required: True
  • owner
    • type: string
    • description: 用户名
    • default: 基石智算的账户ID
    • required: True
  • service_id
    • type: string
    • description: 服务ID
    • default: 来自上下文service_id,如果上下文没有,则需要询问,从get_inference_service获取
    • required: True
  • size
    • type: integer
    • description: 每页数量
    • default: 100
    • required: True
  • reverse
    • type: boolean
    • description: 是否反转
    • default: True
    • required: True
  • start_time
    • type: string
    • description: 开始UTC时间
    • default: 默认为24小时前时间,格式为%Y-%m-%dT%H:%M:%S.000Z
    • required: False
  • end_time
    • type: string
    • description: 结束UTC时间
    • default: 默认为当前时间,格式为%Y-%m-%dT%H:%M:%S.000Z
    • required: False

mcp-server-coreshub FAQ

How do I install the mcp-server-coreshub?
Install Python and uv, then clone the repository from GitHub and run the server using the provided commands.
What environment variables are required?
You need to set QY_ACCESS_KEY_ID, QY_SECRET_ACCESS_KEY, and CORESHUB_USER_ID for authentication.
Can I run this MCP server on macOS?
Yes, it supports macOS with stdio type configuration and appropriate command setup.
How does this server integrate with Cherry Studio?
It can be configured in Cherry Studio's MCP server settings for seamless model and tool orchestration.
Are there plugin capabilities?
Yes, it supports a plugins directory for adding tools and prompt plugins to extend functionality.
What models are recommended for use?
Models with 32B parameters or more are recommended for optimal tool invocation and performance.
Is the server implementation customizable?
Yes, the server is implemented in Python and can be extended or modified via its modular structure.