AGI-Alpha-Agent-v0

MCP.Pizza Chef: MontrealAI

AGI-Alpha-Agent-v0 is a multi-agent α-AGI client designed to autonomously identify, learn, think, design, strategize, and execute on latent opportunities across industries. It orchestrates self-improving agentic α-AGI agents to detect inefficiencies and transform them into compounding value, enabling end-to-end autonomous enterprise operations in complex real-world domains.

Use This MCP client To

Autonomously identify market inefficiencies and latent opportunities Coordinate multiple AI agents for complex problem solving Execute strategic decisions across diverse industry domains Continuously learn and improve agent performance over time Design innovative solutions based on real-time data insights Strategize business moves using multi-agent collaboration Operate autonomous on-chain enterprises with AI agents Transform discovered alpha into actionable business value

README

Alpha‑Factory v1 👁️✨ — Multi‑Agent AGENTIC α‑AGI

Out‑learn · Out‑think · Out‑design · Out‑strategise · Out‑execute


Mission 🎯  Identify 🔍 → Learn 📚 → Think 🧠 → Design 🎨 → Strategise ♟️ → Execute ⚡ — compounding real‑world α across all industries.

Global markets seep USD ✧ trillions/yr in latent opportunity — “alpha” in the broadest sense:
pricing dislocations • supply‑chain entropy • novel drug targets • policy loopholes • undiscovered materials.

Alpha‑Factory v1 is an antifragile constellation of self‑improving Agentic α‑AGI Agents 👁️✨ orchestrated to spot live alpha across any industry and transmute it into compounding value.

Definition: An α‑AGI Business 👁️✨ is an on‑chain autonomous enterprise (<name>.a.agi.eth) that unleashes a swarm of self‑improving agentic α‑AGI agents 👁️✨ (<name>.a.agent.agi.eth) to hunt down inefficiencies across any domain and transmute them into $AGIALPHA.

Official definition – Meta-Agentic (adj.): Describes an agent whose primary role is to create, select, evaluate, or re‑configure other agents and the rules governing their interactions, thereby exercising second‑order agency over a population of first‑order agents. The term was pioneered by Vincent Boucher, President of MONTREAL.AI.

Built atop OpenAI Agents SDK, Google ADK, A2A protocol, and Anthropic’s Model Context Protocol, the stack runs cloud‑native or air‑gapped, hot‑swapping between frontier LLMs and distilled local models.


📜 Table of Contents

  1. Design Philosophy
  2. System Topology 🗺️
  3. World‑Model & Planner 🌌
  4. Agent Gallery 🖼️ (12 agents)
  5. Demo Showcase 🎬 (12 demos)
  6. Memory & Knowledge Fabric 🧠
  7. 5‑Minute Quick‑Start 🚀
  8. Deployment Recipes 🍳
  9. Governance & Compliance ⚖️
  10. Observability 🔭
  11. Extending the Mesh 🔌
  12. Troubleshooting 🛠️
  13. Roadmap 🛣️
  14. Credits 🌟

0 · Design Philosophy

“We have shifted from big‑data hoarding to big‑experience compounding.” — Era of Experience.

  • Experience‑First Loop — Sense → Imagine (MuZero‑style latent planning) → Act → Adapt.
  • AI‑GA Autogenesis — The factory meta‑evolves new agents and curricula inspired by Clune’s AI‑Generating Algorithms.
  • Graceful Degradation — GPU‑less? No cloud key? Agents fall back to distilled local models & heuristics.
  • Zero‑Trust Core — SPIFFE identities, signed artefacts, guard‑rails, exhaustive audit logs.
  • Polyglot Value — Everything is normalised to a common alpha Δ∑USD lens.

1 · System Topology 🗺️

flowchart LR
  ORC([🛠️ Orchestrator])
  WM[(🌌 World‑Model)]
  MEM[(🔗 Vector‑Graph Memory)]
  subgraph Agents
    FIN(💰)
    BIO(🧬)
    MFG(⚙️)
    POL(📜)
    ENE(🔋)
    SUP(📦)
    RET(🛍️)
    CYB(🛡️)
    CLM(🌎)
    DRG(💊)
    SCT(⛓️)
    TAL(🧑‍💻)
  end
  ORC -- A2A --> Agents
  Agents -- experience --> WM
  WM -- embeddings --> MEM
  ORC -- Kafka --> DL[(🗄️ Data Lake)]
Loading
  • Orchestrator auto‑discovers agents (see backend/agents/__init__.py) and exposes a unified REST + gRPC facade.
  • World‑Model uses MuZero‑style latent dynamics for counterfactual planning.
  • Memory Fabric = pgvector + Neo4j for dense & causal recall.

2 · World‑Model & Planner 🌌

Component Source Tech Role
Latent Dynamics MuZero++ Predict env transitions & value
Self‑Play Curriculum POET‑XL Generates alpha‑labyrinth tasks
Meta‑Gradient AI‑GA Evolves optimiser hyper‑nets
Task Selector Multi‑Armed Bandit Schedules agent ↔ world‑model interactions

3 · Agent Gallery 🖼️

flowchart TD
    ORC["🛠️ Orchestrator"]
    GEN{{"🧪 Env‑Generator"}}
    LRN["🧠 MuZero++"]

    subgraph Agents
        FIN["💰"]
        BIO["🧬"]
        MFG["⚙️"]
        POL["📜"]
        ENE["🔋"]
        SUP["📦"]
        RET["🛍️"]
        MKT["📈"]
        CYB["🛡️"]
        CLM["🌎"]
        DRG["💊"]
        SMT["⛓️"]
    end

    %% message flows
    GEN -- tasks --> LRN
    LRN -- policies --> Agents
    Agents -- skills --> LRN

    ORC -- A2A --> FIN
    ORC -- A2A --> BIO
    ORC -- A2A --> MFG
    ORC -- A2A --> POL
    ORC -- A2A --> ENE
    ORC -- A2A --> SUP
    ORC -- A2A --> RET
    ORC -- A2A --> MKT
    ORC -- A2A --> CYB
    ORC -- A2A --> CLM
    ORC -- A2A --> DRG
    ORC -- A2A --> SMT
    ORC -- A2A --> GEN
    ORC -- A2A --> LRN

    ORC -- Kafka --> DATALAKE["🗄️ Data Lake"]
    FIN -.->|Prometheus| GRAFANA{{"📊"}}
Loading
# Agent Path Prime Directive Status Key Env Vars
1 Finance 💰 finance_agent.py Multi‑factor alpha & RL execution Prod BROKER_DSN
2 Biotech 🧬 biotech_agent.py CRISPR & assay proposals Prod OPENAI_API_KEY
3 Manufacturing ⚙️ manufacturing_agent.py CP‑SAT optimiser Prod SCHED_HORIZON
4 Policy 📜 policy_agent.py Statute QA & diffs Prod STATUTE_CORPUS_DIR
5 Energy 🔋 energy_agent.py Spot‑vs‑forward arbitrage Beta ISO_TOKEN
6 Supply‑Chain 📦 supply_chain_agent.py Stochastic MILP routing Beta SC_DB_DSN
7 Retail Demand 🛍️ retail_demand_agent.py SKU forecast & pricing Beta POS_DB_DSN
8 Cyber‑Sec 🛡️ cyber_threat_agent.py Predict & patch CVEs Beta VT_API_KEY
9 Climate Risk 🌎 climate_risk_agent.py ESG stress tests Beta NOAA_TOKEN
10 Drug‑Design 💊 drug_design_agent.py Diffusion + docking Incub CHEMBL_KEY
11 Smart‑Contract ⛓️ smart_contract_agent.py Formal verification Incub ETH_RPC_URL
12 Talent‑Match 🧑‍💻 talent_match_agent.py Auto‑bounty hiring Incub
%% Legend
%%  solid arrows  = primary value‑flow
%%  dashed arrows = secondary / supporting influence
%%  node emojis   = domain archetypes

graph TD
    %% Core pillars
    FIN["💰 Finance"]
    BIO["🧬 Biotech"]
    MFG["⚙️ Manufacturing"]
    POL["📜 Policy / Reg‑Tech"]
    ENE["🔋 Energy"]
    SUP["📦 Supply‑Chain"]
    RET["🛍️ Retail / Demand"]
    CYB["🛡️ Cyber‑Security"]
    CLM["🌎 Climate"]
    DRG["💊 Drug Design"]
    SMT["⛓️ Smart Contracts"]
    TLT["🧑‍💼 Talent"]

    %% Derived transversal competences
    QNT["📊 Quant R&D"]
    RES["🔬 Research Ops"]
    DSG["🎨 Design"]
    OPS["🔧 DevOps"]

    %% Primary value‑creation arcs
    FIN -->|Price discovery| QNT
    FIN -->|Risk stress‑test| CLM
    BIO --> DRG
    BIO --> RES
    MFG --> SUP
    ENE --> CLM
    RET --> FIN
    POL --> CYB
    SMT --> FIN

    %% Cross‑pollination (secondary, dashed)
    FIN -.-> POL
    SUP -.-> CLM
    CYB -.-> OPS
    DRG -.-> POL
    QNT -.-> RES
    RET -.-> DSG

    %% Visual grouping
    subgraph Core
        FIN
        BIO
        MFG
        POL
        ENE
        SUP
        RET
        CYB
        CLM
        DRG
        SMT
        TLT
    end
    classDef core fill:#0d9488,color:#ffffff,stroke-width:0px;
Loading

Each agent exports a signed proof‑of‑alpha message to the Kafka bus, enabling cross‑breeding of opportunities.

sequenceDiagram
    participant User
    participant ORC as Orchestrator
    participant FIN as 💰
    participant GEN as 🧪
    User->>ORC: /alpha/run
    ORC->>GEN: new_world()
    GEN-->>ORC: env_json
    ORC->>FIN: act(env)
    FIN-->>ORC: proof(ΔG)
    ORC-->>User: artefact + KPI
Loading

4 · Demo Showcase 🎬

# Folder Emoji Lightning Pitch Alpha Contribution Start Locally
1 aiga_meta_evolution 🧬 Agents evolve new agents; genetic tests auto‑score fitness. Expands strategy space, surfacing fringe alpha. docker compose -f demos/docker-compose.aiga_meta.yml up
2 alpha_agi_business_v1 🏦 Auto‑incorporates a digital‑first company end‑to‑end. Shows AGI turning ideas → registered business. docker compose -f demos/docker-compose.business_v1.yml up
3 alpha_agi_business_2_v1 🏗️ Iterates business model with live market data RAG. Continuous adaptation → durable competitive alpha. docker compose -f demos/docker-compose.business_2.yml up
4 alpha_agi_business_3_v1 📊 Financial forecasting & fundraising agent swarm. Optimises capital stack for ROI alpha. docker compose -f demos/docker-compose.business_3.yml up
5 alpha_agi_marketplace_v1 🛒 Peer‑to‑peer agent marketplace simulating price discovery. Validates micro‑alpha extraction via agent barter. docker compose -f demos/docker-compose.marketplace.yml up
6 alpha_asi_world_model 🌌 Scales MuZero‑style world‑model to an open‑ended grid‑world. Stress‑tests anticipatory planning for ASI scenarios. docker compose -f demos/docker-compose.asi_world.yml up
7 cross_industry_alpha_factory 🌐 Full pipeline: ingest → plan → act across 4 verticals. Proof that one orchestrator handles multi‑domain alpha. docker compose -f demos/docker-compose.cross_industry.yml up
8 era_of_experience 🏛️ Streams of life events build autobiographical memory‑graph tutor. Transforms tacit SME knowledge into tradable signals. docker compose -f demos/docker-compose.era.yml up
9 finance_alpha 💹 Live momentum + risk‑parity bot on Binance test‑net. Generates real P&L; stress‑tested against CVaR. docker compose -f demos/docker-compose.finance.yml up
10 macro_sentinel 🌐 GPT‑RAG news scanner auto‑hedges with CTA futures. Shields portfolios from macro shocks. docker compose -f demos/docker-compose.macro.yml up
11 muzero_planning ♟️ MuZero plans synthetic markets → optimal execution curves. Validates world‑model planning in noisy domains. docker compose -f demos/docker-compose.muzero.yml up
12 self_healing_repo 🩹 CI fails → agent crafts patch ⇒ PR green again. Maintains pipeline uptime alpha. docker compose -f demos/docker-compose.selfheal.yml up

Colab? Each folder ships an *.ipynb that mirrors the Docker flow with free GPUs.

Paper: Multi-Agent AGENTIC α-AGI World-Model Demo 🥑

┌──────────────────────────────── Alpha-Factory Bus (A2A) ───────────────────────────────┐
│                                                                                        │
│   ┌──────────────┐   curriculum   ┌───────────┐   telemetry   ┌────────────┐          │
│   │ StrategyAgent│───────────────►│ Orchestr. │──────────────►│   UI / WS  │          │
│   └──────────────┘                │  (loop)   │◄──────────────│  Interface │          │
│          ▲  ▲                     └───────────┘    commands   └────────────┘          │
│          │  │ new_env/reward                     ▲                                   │
│   plans  │  │ loss stats                        │ halt                              │
│          │  └──────────────────────┐            │                                   │
│   ┌──────┴───────┐   context       │            │                                   │
│   │ ResearchAgent│───────────────► Learner (MuZero) ◄─ SafetyAgent (loss guard)      │
│   └──────────────┘                │   ▲                                             │
│              code patches         │   │                                             │
│   ┌──────────────┐                │   │ gradients                                   │
│   │ CodeGenAgent │────────────────┘   │                                             │
│   └──────────────┘                    │                                             │
│                                       ▼                                             │
│                            POET Generator → MiniWorlds (env pool)                    │
└────────────────────────────────────────────────────────────────────────────────────────┘

Alpha‑Factory v1 → Ω‑Lattice v0
Transmuting cosmological free‑energy gradients into compounding cash‑flows.

Multi‑Scale Energy‑Landscape Diagram:

flowchart TB
  subgraph Macro["Macro‑Finance Δβ"]
    FIN[FinanceAgent]:::agent
    ENE[EnergyAgent]:::agent
  end
  subgraph Meso["Supply‑Chain ΔS"]
    MFG[ManufacturingAgent]:::agent
    LOG[LogisticsAgent]:::agent
  end
  subgraph Micro["Bio/Chem ΔH"]
    BIO[BiotechAgent]:::agent
    MAT[MaterialsAgent]:::agent
  end
  FIN & ENE -->|β feed| ORC
  MFG & LOG -->|entropy ΔS| ORC
  BIO & MAT -->|latent ΔH| ORC
  classDef agent fill:#cffafe,stroke:#0369a1;
Loading

Cells with (Δ\mathcal F < 0) glow 🔵 on Grafana; Ω‑Agents race to harvest.


5 · Memory & Knowledge Fabric 🧠

[Event] --embedding--> PGVector DB
                   \--edge--> Neo4j (CAUSES, SUPPORTS, RISK_OF)
  • Agents query mem.search("supply shock beta>0.2")
  • Planner asks Neo4j: MATCH (a)-[:CAUSES]->(b) WHERE b.delta_alpha > 5e6 RETURN path

6 · 5‑Minute Quick‑Start 🚀

git clone https://github.com/MontrealAI/AGI-Alpha-Agent-v0.git
cd AGI-Alpha-Agent-v0/alpha_factory_v1
pip install -r requirements.txt

export ALPHA_KAFKA_BROKER=localhost:9092
python -m backend.orchestrator
open http://localhost:8000/docs

No GPU → falls back to GGML Llama‑3‑8B‑Q4.
No OPENAI_API_KEY → switches to local SBERT + heuristics.


7 · Deployment Recipes 🍳

Target Command Notes
Docker Compose docker compose up -d Kafka, Prometheus, Grafana
Helm (K8s) helm install af charts/alpha-factory SPIFFE, HPA
AWS Fargate ./infra/deploy_fargate.sh SQS shim for Kafka
IoT Edge python edge_runner.py --agents manufacturing,energy Jetson Nano

8 · Governance & Compliance ⚖️

  • MCP envelopes (SHA‑256, ISO‑8601, policy hash)
  • Red‑Team Suite fuzzes prompts & actions
  • Attestations — W3C Verifiable Credentials at every Actuator call

9 · Observability 🔭

Signal Sink Example
Metrics Prometheus alpha_pnl_realised_usd
Traces OpenTelemetry trace_id
Dashboards Grafana alpha-factory/trade-lifecycle.json

10 · Extending the Mesh 🔌

from backend.agent_base import AgentBase

class MySuperAgent(AgentBase):
    NAME = "super"
    CAPABILITIES = ["telemetry_fusion"]
    COMPLIANCE_TAGS = ["gdpr_minimal"]

    async def run_cycle(self):
        ...

# setup.py entrypoint
[project.entry-points."alpha_factory.agents"]
super = my_pkg.super_agent:MySuperAgent

pip install . → orchestrator hot‑loads at next boot.


11 · Troubleshooting 🛠️

Symptom Cause Fix
ImportError: faiss FAISS missing pip install faiss-cpu
Agent quarantined exceptions Check logs, clear flag
Kafka refuse broker down unset ALPHA_KAFKA_BROKER

12 · Roadmap 🛣️

  1. RL‑on‑Execution — slippage‑aware order routing
  2. Federated Mesh — cross‑org agent exchange via ADK federation
  3. World‑Model Audits — interpretable probes of latents
  4. Industry Packs — Health‑Care, Gov‑Tech
  5. Provable Safety ℙ — Coq proofs for Actuators

13 · Credits 🌟

Vincent Boucher—pioneer in AI and President of MONTREAL.AI since 2003—dominated the OpenAI Gym with AI Agents in 2016 and unveiled the seminal “Multi‑Agent AI DAO” in 2017.

Our AGI ALPHA AGENT, fuelled by the strictly‑utility $AGIALPHA token, now taps that foundation to unleash the ultimate α‑signal engine.


Made with ❤️ by the Alpha‑Factory Agentic Core Team — forging the tools that forge tomorrow.

AGI-Alpha-Agent-v0 FAQ

How does AGI-Alpha-Agent-v0 coordinate multiple agents?
It orchestrates a constellation of self-improving α-AGI agents to collaborate on identifying and executing opportunities.
Can AGI-Alpha-Agent-v0 operate autonomously without human intervention?
Yes, it is designed as an end-to-end autonomous client that learns, strategizes, and executes independently.
What industries can AGI-Alpha-Agent-v0 be applied to?
It is industry-agnostic and can identify alpha opportunities across markets like finance, supply chain, pharmaceuticals, and policy.
How does the client improve its performance over time?
Through continuous learning and self-improvement mechanisms embedded in its multi-agent architecture.
Is AGI-Alpha-Agent-v0 compatible with blockchain or on-chain operations?
Yes, it supports autonomous on-chain enterprises and agent identities for decentralized execution.
What makes AGI-Alpha-Agent-v0 different from other AI clients?
Its multi-agent α-AGI design enables complex, compound reasoning and execution across diverse real-world domains.
How secure is the operation of AGI-Alpha-Agent-v0?
It follows secure, scoped, and observable interaction principles to ensure safe autonomous operations.
Which LLM providers can AGI-Alpha-Agent-v0 integrate with?
It can integrate with providers like OpenAI, Anthropic Claude, and Google Gemini for language model capabilities.